Research

I am passionate about learning how chemicals degrade in the environment and whether any hazardous transformation products are formed during degradation. The ultimate goal of my research is to develop more accurate methods to assess persistence and risk from transformation product formation in regulatory risk assessment procedures. My research focuses on the following three areas in particular.
 

bild

1. Prediction of biodegradation pathways and rates
Current (Q)SBRs tools to predict biodegradation half-lives produce highly uncertain results and available pathway prediction tools suffer from combinatorial explosion due to a lack of methods to prioritize possible pathways. In my research, I mine biotransformation pathway and rate information to develop novel algorithms for biotransformation prediction. In parallel, my team performs bioreactor experiments with pertinent microbial communities and employ high-resolution mass spectrometry to identify transformation products to use that data to further improve biotransformation prediction.

Read more

 

2. Hazard and risk assessment of transformation products
The goal of this aspect of my research is to develop models and indicators to predict and assess the environmental fate of transformation products. In collaboration with the team of Prof. B. Escher (UFZ Leipzig, Universität Tübingen) we are developing methods to estimate mixture toxicity of transformation products and their parent compound, using the strong structural resemblance to the parent compounds and what is known about parent toxicity as a guiding principle.

Read more

 

bild

3. Improved tools for persistence assessment Persistence assessment is key to all chemical legislations in Europe. In my research, I try to contribute to a critical reflection of current persistence assessment paradigms and methods. For instance, I introduced the concept of joint persistence as novel persistence indicator that accounts for transformation product formation. Currently, I am also working on a project that evaluates the value of the OECD 308 guideline for evaluation of persistence of chemicals at the sediment-water interface.

Read more